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Background and Objective    Obstructive sleep apnea (OSA) has significant effects on quali-
ty of life and may lead to cognitive impairments. Continuous positive airway pressure (CPAP) 
is the standard treatment for OSA and has been shown to improve sleep disturbances and day-
time dysfunction. In this study, we aimed to assess the effects of CPAP on white matter (WM) 
integrity using longitudinal diffusion tensor imaging (DTI) tests.
Methods    Twenty-two male patients with moderate to severe OSA were recruited, and the 
patients underwent DTI scanning before and 6–44 months after CPAP treatment. Sixteen male 
patients with untreated OSA who were not compliant with CPAP were included as a reference 
group. We compared the functional anisotropy (FA) values between baseline and follow-up 
magnetic resonance imaging in both the CPAP and untreated groups using tract-specific statis-
tical analysis (TSSA) method. 
Results    The TSSA analysis showed that FA values in the middle part of the right corticospi-
nal tract were increased after treatment in the CPAP group. In the untreated group, no signifi-
cant change in FA value was observed between baseline and follow-up. In the CPAP group, the 
post-treatment FA value in the anterior part of the right anterior thalamic radiation was signifi-
cantly correlated with the duration of CPAP therapy, after controlling for age, body mass index, 
and baseline FA value. 
Conclusions    Our study suggests that long-term CPAP treatment could gradually reverse 
OSA-induced injury to the WM microstructure, particularly WM associated with the motor 
and limbic systems. The study findings provide new insights into the mechanisms of cognitive 
improvement after CPAP treatment in patients with OSA. 
 Sleep Med Res 2023;14(1):31-36
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INTRODUCTION

Obstructive sleep apnea (OSA) is one of the most prevalent sleep disorders, and is char-
acterized by repetitive interruption of breathing during sleep due to complete or partial air-
way obstruction. Repetitive apneas and hypopneas cause intermittent hypoxemia, hyper-
capnia, microarousals, and fragmented sleep [1], resulting in structural and functional 
alterations in the brain. OSA is associated with cognitive impairments in various domains, 
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including memory, executive function, and attention [2,3]. Sev-
eral neuroimaging studies obtained using various modalities 
have investigated the pathophysiological mechanisms of OSA 
to identify loss of gray matter (GM) volume [4,5], disruption of 
white matter (WM) integrity [6,7], limited cerebral blood flow 
[8,9], and alterations in functional connectivity [10,11].

Continuous positive airway pressure (CPAP) has been the 
most effective and widely used treatment for OSA. Studies have 
shown that CPAP treatment eliminates the respiratory distur-
bances and sleep fragmentation [12], and also reduces the risk 
of cardiovascular diseases [13-15]. Furthermore, CPAP has been 
shown to improve subjective daytime functioning and cogni-
tive performance [16-18]. Although investigations into the ef-
fects of CPAP through brain imaging are underway, most studies 
have been limited to perfusion imaging and functional magnetic 
resonance imaging (MRI). It has yet to be determined whether 
this functional improvement (dynamic change) results in re-
covery of the structural damage that occurs in OSA. While ear-
lier voxel-based morphometry studies found no significant lon-
gitudinal GM changes after CPAP therapy [19,20], other groups 
demonstrated improvement in GM volume [21,22], especially 
after long-term treatment [23].

Studies focusing on the effects of CPAP on WM structures 
are limited. The first study that used a diffusion tensor imaging 
(DTI) technique found normalization of functional anisotropy 
(FA) after 12 months of CPAP, but the number of OSA patients 
was small [24]. A recent study investigated changes in WM mi-
crostructure after CPAP treatment along with cerebral perfusion 
changes, but only six patients were included, and their duration 
of treatment was short (six weeks) [25]. In regard to DTI anal-
ysis methods, both studies used a voxel-wise approach, which 
cannot specify anatomically which WM tracts are impaired.

Tract-specific statistical analysis (TSSA), a method that was 
developed and validated by our group, improves the mapping 
of tract diffusion coefficients along the corresponding major an-
atomical tracts [26]. This system uses the results of subject-spe-
cific tractography and a tract classification method that acquires 
the fiber directions in subject-specific tractography maps. Using 
the TSSA method, it is able to identify local disruptions in spe-
cific fiber tracts using the orientation of all fiber tracts, which 
provides clues to clarify functional abnormalities. This process 
has demonstrated clinical utility in sleep disorders to identify 
tract-specific abnormalities in patients with OSA, narcolepsy, 
and restless legs syndrome [7,27,28].

In the present study, we used the TSSA method to investigate 
the effects of CPAP treatment on the WM integrity of patients 
with OSA by comparing longitudinal changes on DTI imaging 
in a treated group and an untreated group. 

METHOD

Participants
Twenty-two male patients with moderate to severe OSA (ap-

nea–hypopnea index [AHI] ≥ 15) were recruited from the Sleep 
Clinic at Samsung Medical Center in Seoul, South Korea. All pa-
tients underwent MRI scans within one month prior to initiat-
ing CPAP treatment (pre-CPAP scan). They were scanned once 
more after treatment (post-CPAP scan, mean treatment dura-
tion: 21.5 months, range: 6–44 months). All subjects were ad-
herent to CPAP therapy during the entire study period, which 
was defined as ≥ 4 hours nightly usage for at least 70% of nights. 
As reference participants, we recruited 16 untreated OSA pa-
tients with failure in using, or refusal to use, CPAP treatments. 
They underwent follow-up MRI scans 12–62 months after their 
baseline MRI scans. Exclusion criteria for both the CPAP treat-
ment group and the untreated group (reference participants) 
were as follows: 1) comorbid heart and respiratory diseases; 2) 
history of malignancy; 3) history of cerebrovascular or neuro-
logical disease (neurodegenerative diseases, epilepsy, head in-
jury); and 4) alcohol abuse, illicit drug abuse, or current intake 
of psychoactive medications.

The Institutional Review Board of Samsung Medical Center 
(IRB No. 2020-06-015) approved the study protocol, and writ-
ten informed consent was obtained from all participants. The 
methods were carried out in accordance with the Declaration 
of Helsinki and the Good Clinical Practice guidelines.

MRI Scanning 
The T1- and diffusion-weighted images were acquired from 

all participants using the same 3.0-T MRI scanner (Philips 3.0 T 
Achieva; Andover, MA, USA). The T1-weighted images were 
obtained using the following scanning variables: 0.5 mm sagittal 
slice thickness, over contiguous slices with 50% overlap, no gap, 
a repetition time (TR) of 9.9 ms, an echo time (TE) of 4.6 ms, a 
flip angle of 8°, and a matrix size of 240 × 240 pxl. The images 
were reconstructed to 480 × 480 pxl over a 240 mm field of view. 
In the whole-brain diffusion-weighted MRI examination, sets 
of axial diffusion-weighted single-shot echo-planar images were 
collected with the following parameters: 128 × 128 pxl acquisi-
tion matrix, 1.72 mm × 1.72 mm × 2 mm voxels, 70 axial slices, 
a 220 mm × 220 mm field of view, a TE of 60 ms, a TR of 7385 
ms, a flip angle of 90°, a slice gap of 0 mm, and a b-factor of 
600 s/mm2. For baseline images without diffusion weighting (the 
reference volume), diffusion-weighted images were acquired 
from 45 directions. All axial sections were acquired parallel to 
the anterior commissure–posterior commissure line. 

Image Processing and Statistical Analysis
The T1 and DTI image processing and statistical analysis are 

all included in the TSSA method developed by our group. The 
TSSA method consists of three stages: 1) extracting the seven 
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major anatomic tracts from the diffusion coefficients obtained 
from deterministic tractography, 2) generating a tract profile, and 
3) performing statistical analysis. An explanation of the TSSA 
method was previously provided [7,26,27]. Fig. 1 shows the key 
components of each stage in the TSSA method. 

First, tremendous fiber tracts are derived by deterministic trac-
tography after skull stripping and Eddy current distortion cor-
rection as DWI common preprocessing. The FA values were cal-
culated simultaneously. Then, the fiber tracts were automatically 
grouped and labeled into seven major tracts of the anterior tha-
lamic radiation (ATR), cingulum, corticospinal tract (CST), in-
ferior fronto-occipital fasciculus, inferior longitudinal fascicu-
lus, superior longitudinal fasciculus, and uncinate fasciculus by 
multi-atlas-based clustering and labeling method, while also 
considering the individual variability of shape and position [29].

Second, representative streamlines were selected using a fiber 
density map after removing outlier fibers to compute a tract pro-
file of the seven major tracts. Because the representative stream-
line is a fiber that exists in a location through which most of the 
major tracts pass, the selected representative tract contains the 
maximum density. Next, all fiber tract FA values were projected 
to the representative values of corresponding major tracts. To 
project these FA values, point matching between other fiber tracts 
and the representative fiber tract was preceded by an optimal 
point matching method [30], which is robust to spatial distor-
tion and variability. The projected FA values were averaged with 
weights based on the Mahalanobis distance.

As the final step, statistical analysis of the FA values in the CPAP 
treatment groups and the untreated group was performed. To 
evaluate the changes in diffusion parameters along the tract over 
time for each group, a permutation-based analysis of covariance 

was applied with 10000 permutations. A cluster-based statistics 
(CBS) method that is widely used in voxel-based morphometry 
was applied for multiple comparisons correction [31,32]. To in-
vestigate the association between FA value after CPAP therapy 
and duration of CPAP therapy in the treatment group, permu-
tation-based tests for correlation were performed. After that, 
the significance level of the correlation coefficient was adjusted 
using CBS [33]. Partial correlation coefficients were calculated 
for the follow-up FA values in the tract profile after controlling 
for age, body mass index (BMI), AHI, and baseline FA value as 
covariates. The TSSA method was performed with a combina-
tion of the Diffusion Toolkit [34], FMRIB Software Library (FSL) 
[35], MATLAB R2022a (MathWorks, Inc., Natick, MA, USA), 
and our in-house code. 

RESULTS

Baseline Characteristics
Table 1 summarizes the detailed clinical characteristics and 

polysomnographic (PSG) findings between the CPAP group 
and the untreated group. The demographic characteristics and 
PSG parameters were not significantly different between the two 
groups. The time intervals between baseline and the follow-up 

Table 1. Baseline characteristics of the CPAP group and the un-
treated group

Characteristic
CPAP 

(n = 22)
Untreated 
(n = 16)

p-value

Clinical factors
Age (yr) 46.0 ± 9.0 42.3 ± 9.3 0.235
Male sex 22 (100) 16 (100)
Body mass index (kg/m2) 27.5 ± 3.9 28.6 ± 3.5 0.390
ESS 9.6 ± 4.0 10.9 ± 4.0 0.395
Time interval between  
   baseline-following MRI 
scan (month)

21.5 ± 20.4 41.0 ± 15.4 < 0.001

Night polysomnography
Total sleep time (min) 355.5 ± 46.5 352.8 ± 75.4 0.895
Sleep latency (min) 8.6 ± 8.2 6.1 ± 4.6 0.277
Sleep efficiency (%) 82.6 ± 9.5 84.9 ± 11.8 0.506
N1 (%) 38.9 ± 14.4 29.8 ± 11.4 0.045
N2 (%) 38.9 ± 10.9 46.3 ± 11.8 0.058
N3 (%) 2.7 ± 3.9 3.8 ± 5.3 0.462
REM (%) 19.5 ± 5.1 20.1 ± 5.2 0.726
Arousal index (/h) 49.3 ± 16.9 41.6 ± 15.4 0.159
Apnea–hypopnea index (/h) 57.6 ± 21.5 50.8 ± 20.7 0.334

Data are presented as mean ± SD or number (%).
CPAP, continuous positive airway pressure; ESS, Epworth Sleepi-
ness Scale; MRI, magnetic resonance imaging.

Major anatomical tracts extraction

Tract diffusion profile generation

Statistical analysis

Whole-brain
tractography

Diffusion data
projection

Representative
tract selection

WM
classification &

labeling

Fig. 1. An overview of the white matter (WM) tract-based ap-
proach of the tract-specific statistical analysis.
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MRI scans were longer in the untreated group than in the CPAP 
group (41.0 ± 15.4 vs. 21.5 ± 20.4 months, p < 0.001). 

Comparisons of TSSA Results Between the CPAP 
and Untreated Groups

In the CPAP group, the mean FA value in the middle part of 
the right CST was significantly increased after treatment, after 
controlling for age and BMI (p = 0.017) (Fig. 2). The untreated 
group did not show any significant change in the FA value on 
the follow-up MRI scans, compared to baseline. Supplementary 
Table 1 (in the online-only Data Supplement) presents detailed 
FA values of the seven major WM tracts at baseline and on fol-
low-up MRI. 

Association Between TSA Values and Durations of 
CPAP Therapy

For the relationships between tract-specific FA values and 
durations of CPAP therapy in the treatment group (n = 22), the 
FA value in the anterior part of the right ATR after CPAP treat-
ment was positively correlated with the duration of CPAP ther-
apy, after controlling for age, BMI, and baseline FA value (r = 
0.250, p = 0.034) (Fig. 3). The correlation between the FA value 

of the right ATR and treatment duration were significant even 
after controlling the effect of baseline AHI in addition to above-
mentioned factors (r = 0.250, p = 0.037).

DISCUSSION

This is the first study to demonstrate “tract-specific” WM 
changes after CPAP treatment by comparing longitudinal DTI 
scans of untreated and CPAP-treated OSA patients. We found 
an increase in FA value of the right CST after CPAP treatment, 
while there was no significant change in the FA values of the un-
treated group. Furthermore, we found significant correlation be-
tween the duration of CPAP treatment and post-treatment FA 
values of the right ATR in the CPAP group. The TSSA method 
enabled location of the specific portion and direction of WM fiber 
changes, which helps clarify the CPAP effect on brain function. 

The CST, which showed significant FA changes after CPAP in 
our study, is a major neural tract known to convey sensorimo-
tor information. Decreased FA values in the CST were observed 
in patients with OSA in previous studies [6,36], and one of them 
revealed a correlation between FA value in the CST and the se-

Lateral view Medial viewA  B
Fig. 2. Changes of FA value after CPAP therapy in the right corticospinal tract. Red colors (A) and black line (B) indicate the portions of fiber 
tracts where FA values significantly increased after CPAP therapy, compared to baseline (p < 0.05). 
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verity of OSA [36]. This finding implies that the microstructural 
integrity of the CST is affected by the detrimental process of OSA, 
and our study demonstrated that CPAP could alleviate the dis-
ruption in the CST. Previous DTI studies that have investigated 
WM changes after CPAP treatment did not detect a significant 
difference in this area. Castronovo et al. [24] observed changes in 
FA and MD in the parietal and prefrontal regions, while Maresky 
et al. [25] found increases in FA in the hippocampus, medial tem-
poral lobe, fusiform gyrus, and parietal lobule [24,25]. These 
conflicting findings could be explained by the large number of 
participants and their long-term treatment in our study, which 
enabled more sensitive detection of the treatment effect of CPAP. 

The duration of CPAP treatment is an important factor for 
WM recovery. Castronovo et al. [24] found limited changes in 
WM after three months of CPAP, whereas an almost complete 
reversal of WM abnormalities was observed after 12 months of 
CPAP. Our study found a positive correlation between post-
treatment FA value in the right ATR and the duration of treat-
ment in the range of 6–44 months. Our study and that of Cas-
tronovo et al. [24] imply that WM recovery in response to CPAP 
treatment is a gradual process over a long period of time. Al-
though the underlying pathomechanism is unclear, a decrease 
in reactive oxygen species production due to a reversal of hy-
poxia and normalized cerebral vasculature could allow activa-
tion of the intrinsic mechanisms of axonal repair [25,37]. From 
a clinical perspective, our findings suggest that future DTI stud-
ies to investigate the effects of CPAP would be better to include 
patients treated for at least six months, and highlight the im-
portance of long-term adherence to CPAP treatment for OSA 
patients.

The ATR consists of fibers between the mediodorsal thalamic 
nuclei and the frontal cortex, and between the anterior thalamic 
nuclei and the anterior cingulate cortices. The role of the ante-
rior thalamic nucleus in cognition as part of the limbic system 
is well known, and destruction of the ATR has been reported to 
be related to cognitive decline in various conditions [38-40]. Our 
team previously reported decreased FA value in the right ATR 
in male OSA patients [7]. In the present study, we did not find 
a significant change in FA value in the right ATR in our direct 
comparison between pre- and post-CPAP treatment. However, a 
positive correlation between post-treatment FA in the right ATR 
and the duration of CPAP implies that the microstructure of 
ATR was gradually affected by CPAP treatment. This may fur-
ther explain the cognitive improvement after CPAP treatment 
in previous studies [16,17].

The limitations and strengths of this study should be addressed. 
First, the duration of CPAP treatment varied in participants from 
6 to 44 months. The time interval between baseline and follow-up 
scans was longer in the untreated group than in the CPAP group, 
although we corrected it as a covariate in our statistical analysis. 
Second, we did not assess the vascular risk factors of the partici-
pants, such as hypertension and diabetes, which could affect SM 

integrity. Third, in regard to the imaging analysis method, we 
only investigated seven major tracts, because of the restrictions 
of example data used in the tract segmentation method. Lastly, 
since we did not perform post-treatment PSG, changes in apnea 
severity or objective sleep quality before and after treatment could 
not be assessed. Despite these limitations, this study has several 
strong points. Most importantly, we adopted a new analysis meth-
od that specified WM tract abnormalities to assess the treatment 
effect of CPAP. Furthermore, the number of participants includ-
ed in this study was far larger than the number in previous DTI 
studies that investigated the effects of CPAP, which adds strength 
to our findings. Last, we included patients who had been treated 
for a long-term period (mean duration: 21.5 months), which en-
abled the long-term effect of CPAP on WM microstructure to 
be revealed, as well as the correlation between treatment dura-
tion and WM integrity to be identified. 

In conclusion, the present study supports the evidence that 
microstructural WM abnormalities observed in OSA can change 
with treatment. Our TSSA methods used in this study revealed 
that the treatment effect was particularly prominent for tracts 
involved in the motor and limbic systems. Furthermore, our find-
ings emphasize the necessity for long-term use of CPAP in brain 
structural recovery. This longitudinal study provides novel in-
sight into the pathophysiology underlying OSA and the brain 
structural recovery process under CPAP treatment.
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Supplementary Table 1. Comparison of FA values in the seven major white matter tracts 

Major tract
CPAP (n = 22) Untreated (n = 16)

Pre Post p-value Pre Post p-value
LH ATR 0.307 (0.153) 0.291 (0.144) 0.693 0.291 (0.142) 0.282 (0.144) 0.224
LH CST 0.458 (0.146) 0.463 (0.140) 0.256 0.460 (0.135) 0.443 (0.135) 0.188
LH CG 0.372 (0.172) 0.349 (0.181) 0.373 0.343 (0.182) 0.359 (0.181) 0.284
LH IFO 0.259 (0.128) 0.258 (0.131) 0.072 0.259 (0.128) 0.260 (0.125) 0.435
LH ILF 0.246 (0.101) 0.246 (0.092) 0.701 0.236 (0.089) 0.230 (0.088) 0.451
LH SLF 0.316 (0.167) 0.320 (0.171) 0.907 0.319 (0.158) 0.317 (0.170) 0.424
LH UNC 0.206 (0.099) 0.213 (0.098) 0.558 0.204 (0.083) 0.204 (0.081) 0.399
RH ATR 0.362 (0.137) 0.385 (0.148) 0.335 0.358 (0.129) 0.366 (0.128) 0.882
RH CST 0.383 (0.157) 0.418 (0.178) 0.008* 0.414 (0.165) 0.431 (0.170) 0.759
RH CG 0.302 (0.126) 0.300 (0.119) 0.682 0.290 (0.110) 0.310 (0.135) 0.593
RH IFO 0.265 (0.152) 0.271 (0.156) 0.271 0.252 (0.142) 0.254 (0.157) 0.491
RH ILF 0.300 (0.149) 0.305 (0.153) 0.572 0.278 (0.143) 0.288 (0.155) 0.416
RH SLF 0.293 (0.152) 0.307 (0.152) 0.165 0.278 (0.156) 0.292 (0.153) 0.181
RH UNC 0.206 (0.100) 0.205 (0.100) 0.956 0.198 (0.098) 0.184 (0.094) 0.379
Data are presented as mean (SD).
*p < 0.05, statistically significant.
LH, left hemisphere; RH, right hemisphere; FA, functional anisotropy; CPAP, continuous positive airway pressure; ATR, anterior thalamic ra-
diation; CST, corticospinal tract; CG, cingulum; IFO, inferior fronto-occipital fasciculus; ILF, inferior longitudinal fasciculus; SLF, superior 
longitudinal fasciculus; UNC, uncinate fasciculus.


